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AB STRACT

*, A computational algorithm for the determination of

a piece-wise linear approximation to an arbitrarily specified

function of one variable is described. In particular the

algorithm generates the optime piece-wise linear approximation

consistent with a specified accuracy in the sense that the

number of segments is minimized. It is demonstrated that in

contrast to the problem of minimizing the maximum error with

-a specified number of segments, this formulation leads to a

computation based only on local values of the given function

and a correspondingly efficient computational procedure.
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LViece-Wise Linear Approximations

The representation of arbitrarily given curves in terms

of piece-wise linear approximations is a technique of importance

not only in many digital computer applications, but is widely

employed in analog computer embodiments for function represen-

tation. For many applications in the digital realm it is a

strong competitor to rational function approximation techniques

both with respect to the compactness of the representation and

the speed with which the approximation may be evaluated. Of

particular interest on both counts, speed and compactness, are

approximations comprised of the minimum number of linear segments

consistent with the level of accuracy desired. While the problem

of discovering a minimum segment approximation to an arbitrarily

specified function has been previously treated by mathematical

programming techniques (see for example Gluss 9] where it is

formulated as a dynamic program), the procedure described herein

treats the problem rather differently and leads to an efficient

computational algorithm.

The particular problem which is considered in this

paper is that of approximating a single valued function of one

variable in terms of a sequence of linear segments. More

formally we assume a given function f(x) defined on the interval

[a,b], and we seek an approximating function g(x) such that

If(x)-g(x) is for a~x~b. The function g(x) is to consist of a

sequence of linear pieces so that for every x in Li,b], g(x) is

of the form g(x)=a+px. More particularly values xi for i=0,I,2,

.. ,n are to be selected having the properties that a=x0I



"x i <xi+l+ and x n=b so that for xi,_<X<X gx), of

all approximating functions g(x) which meet the above conditions

we are interested in selecting one which is comprised of the

40 minimum possible number of linear segments. Two cases are to

[r be considered; (1) the function g(x) may be discontinuous at the

"boundaries between the lincar srginents, (2•o the function g(x)

must be continuous everywhere on Lab].

Consider first the case in which discontinuities are

permitted at the linear segment boundaries. An example of a

three segment approximation of this variety is given in Figure 1.

In this case the algorithm may begin by selecting the longest

single linear segment which satisfies the error restriction

everywhere from a to the right-most boundary of the initial

I segment, i.e., by finding allp, and x, such that 1(a1 + PIx)

-.f(x)I<b for a<x_<x I and moreover xI is as large as possible. It

is clear that the segment gl(x)=(al + Pix) for a •<x<_xl may be

V taken as a component of the optimal approximition since any

other choice of a left-most segment would result in a "remaining

ii function to be approximated" which includes the interval [Xjb].

It is obviously not possible that the number of linear segments

required to approximate f(x) over [(,b] is less than the number

required over [xlbl, where F<'xl, since any M segment approxi-

mation of f(x) over [Fb] is itself an approximation over the

subinterval [xl,bI consisting of at most M segments.

The algorithm proceeds by repeated selection of the

linear segment of maximum scope from the left-hand end of the

S"remaining function to be approximated".
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Since we are primarily concerned wiLh the determination

"of approximations to arbitrarily given functions by means of

a digital computer, we will deal with a slightly different

problem in which we assume that the function f(x) is defined only

at a discrete set of points which we take to be the non-negative

integers. Thus we restate the problem of selecting the initial

linear segment a f, i'lsm Given real numbers 6,f(0),f((),

f(2),..., find real numbers a, Jý, and n such that if(j)-(n + 4- J

Ii <N for O<j•n and n is maximal.

r Note that for each value of j in O<j<n it follows that
Lach of the following relations must hold:

0a +Pj!f(j) + •, and

c + Pij-f(j)

INote that each of the above relations may be regarded as defining

a half-space in the two dimensional space whose coordinate axis

are a and 13. Thus each value of j may be associated with two

I half-spaces the interscetion of which de(fin-es a sLrip In the

a,0 plane. This strip includes the parameters of all of the

lI linear segments which meet the error conditions for that

particular value of j. Clearly values of a and P exist satisfy-

ing If(j) - (a+3j)I<& for all O<j<n, just in case the intersection

of all the associated half spaces not empty. This observation

suggests the computational algorithm. We begin with j=O and

I determine the equations of the corresponding half planes. We

next set j=1 and find the "corners" of the convex polygon which

is the intersection of the 4 half planes. Note that at this
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point the convex polygon will be in fact a parallelogram. We

next increment. ) by one and determine the uesulting cumulative

intersection which will be either null or a convex polygon. We

proceed in this manner until we have found the largest value of

j such that the cumulative intersection is not empty. Having

found the largest. such value of j we may take as the parameters

of the initial linear segment any value of a and J3 within the

corresponding polygon.

;fhile the preceding discussion outlines an algorithm

which is of interest in the determination of piece-wise linear

approximations in the case where discontintiities are permitted,

a relatively minor variant of that procedure handles the more

interesting case in which g(x) is continuous. While the

principle reason for our interest in the continuous case is

that discontinuities frequently are unacceptable because of

the way in which the approximation is employed in subsequent

computations, the continuous approximation has the interesting

side benefit that it leads to a more compact representation.

T'his is due to the fact that although the number of linear

segments in a continuous approximation may be somewhat greater

than in the discontinuous case each. segment may be defined by

two rather than three parameters. To illustrate the procedure

for a continuous approximation we return to the consideration

of a continuous f(x) and investigate some of the properties of

the linear segment such that I(o + Px) - f(x)lI•- for a<xx I for

the largest possible x 1 . First, it is clear that ;f(xI)-(,+fx 1 ) h

=5 since, if this were not the case, it would be possible to
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to increase xI. Let us assume that a+pxl=f(x )+b. A theorem

due to Tchebysheff tells us that there must be at least 3 points

fTat which the error takes on its maximum value and that the sign

of the error at these points alternates as we move from one

point to the next. Thus there is a right-most point x0 ;:.1 at

which a+Px 0 =f(x 0 )-b. We show in Appendix C that the point x 0

S1has the interesting property that there is in fact no point

S z>x 0 such that a+Pz=f(z)-b and for all axz9z, If(u)-(a+Px) JI•,.

Suppose that by some process we have determined the

parameters of the left-most line segment, that it remains within

the error bound for a!x<Yl, and at yl we have a+3yl=f(yl)+b.

Suppose further that y0 is the rightLmost point in the interval

(a, vi) at which the linear segment touches the lower error

boundary, i.e., a+Py 0 =f(y 0 )-6. 'le now observe that the re-

maining problem is that of finding a set of connected line

segments, minimum in number, such that for Yo<x!b, g(x)Žf(x)-;,

U and for yl<5x`b,(x)<f(x)+'. Any set of connected line segments

[ which meets the above condition will contain a line which

intersects the line >+1 t:) along the segment joining the point

(y0o, f(y 0 )-6) to the point (yl, f(yl)+,ý). Thus if we define

this point of intersection as the right-most boundary of the

Sin~t> :e,,ent re are isz;uref oC intinult" 2 tie bonlry and
ve sen.ent. We next note that the difficulty (measured

in terms of the number of segments required) of the remaining

[ approximation problem (after the first segment has been selected)

can only be reduced by moving either or both of the points y0

and y, to the right, since this diminishes the range over which
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the approximation is constrained by the upper and/or lower

error boundaries. Since the result of Appendix C shows that

both y 0 and yl are maximized by the sai,,e linear segment we

cannot do better than to use that segment.

We note that after the first linear segment has been

established the remaining approximation problem differs from

the original problem in that the upper and lower error

boundaries do not begin at the same point. This does not

complicate the problem in any essential way, however, and may

be easily taken into account by selecting the appropriate half-

spaces to enter into the computational algorithm.

.ýn intuitively satisfying characterization of the

procedure is illustrated in Figure 2 in which the upper and

lower boundaries are regarded as defining a two dimension

tube into which a straight stick is pushea from the left.

Figure 2a illustrates the terminal position of the stick. This

position of the stick defines the first line in the approxi-

mating sequence. That part of the upper boundary to the left

of point b and that to the left of point a on the lower

boundary are then cut away and the process is repeated. This

leads to the terminal stick position of Figure 2b which defines

the second line in the sequence. The articulation point

between the first two sections is obviously their point of

intersection. A computational algorithm treating the discrete

case is described in Appendix A. An efficient procedure for

handling the intersection of a half-space and a convex polygon

6



Fig. 2a Initial Segment Determination

Figq. 2b Second Segment Determination



is given in Appendix B, while Appendix C presents the theorem

on the basis of which the optimality proof rests.

While the preceding discussion has been in terms of

a uniform band of tolerable error it should be apparent that

the uniformity of the error is in no way essential to the

method and in fact the computational algorithm outlined in

Appendix A is given in terms of an arbitrary "upper" and "lower"

curves. While these curves may be defined as (f(x)+6) and

(f(:)-•,) respectively they may also be established by an error

condition which depends on either the independent or dependent

variable. Thus there may be regions of x in which the error

is not particularly important or the tolerable error may be

more reasonable specified as a given percentage of the

independent variable.

It is also possible to employ a yariant of this

technique to represent general paths in 2 or more dimensions

where the path is specified by the coordinates of an ordered

set of points along the curve. This case may be handled by

using the algorithm of Appendix A to obtain approximations

to the parametric functions which describe the variation of

each of the coordinates as functions of the index variable

over the original point set. The index variable may then be

eliminated between the parametric approximations and a

piece-wise linear approximation to the general path in 2 or

more dimensions may be obtained.

(1) B. Gluss, "1A Line-segment curve-fitting Algorithm" In-

formation and Control, Vol. 5, No. 3, Sept. 162

7



[Ip

Appendix A

fi An Algorithm for the Determination

of Piece-Wise Linear Approximations

The problem with which this algorithm deals is

illustrated in Fig. 3. Cl(M) is ordered set of points defining

the "bottom" curve and C2(M) is an ordered set of points de-

p fining the top curve. M is employed as an index variable over

both Cl and C2. What is required is a set of lines which de-

F fine a chain of connected line segments such that all of the

points on Cl are "under" the chain and all C2 points are "over"

the chain. The chain is defined by a sequence of lines

LL(I),I=l,2, ... where the first segment is that part of LL(l)

between its intersection with the vertical line through M=O,

and its intersection with LL(2), the next segment in the chain

is that part of LL(2) between its intersections with LL(l) and

LL(3), etc.

The computational algorithm is given in flow diagram

form in Fig. 4. With respect to Fig. 4 the following definitions
F-

are in order.

Each of the lines in Fig. 3 may be defined in terms

of a y intercept and a slope, e.g. LL(1) may be defined by the

Srelation y=a1 +PR., Thus we may define a t't dimensional space

with axes a and P, each point of which corresponds to a line in

Fig. 3. The notation POLY X is intended to refer to the

f Al
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interior and the boundary of a convex polygon in ap space.

POLY INIT is intended to denote a very large, essentially

infiniteconvex polygon which contains in its interior the

points which correspond to any line which could conceivably

be a member of the approximating sequence. The requirement

that ,,+ M_ C2(M) for each particular value of M -ay be

regarded as defining a half-space in the alp plane, i.e.

the half-space in which the relation holds, and this half-

space is denoted by S(C2(M)). The substitution operation

POLY A-POLY B CS(C2(M)) means that POLY A is replaced with

the polygon which results from the formal intersection

of POLY B and the half space S(C2(M)). The variable LFTC1

is employed to denote the index of the left-most point in

the set C1 which is to be considered as a constraint on the

line segment being determined. LFTC2 is similarly employed

to denote the left-most point on C2. Thus with respect to

Fig. 3 for LL(l), LFTCl=LFTC2=0 since the first line must

be constrained by the points Cl(O) and C2(0) and all points

to the right insofar as possible. The general strategy is

to index M and to determine at each step the polygon in the

alp space which bounds the region in which acceptable line

parameters are to be found. Thus in Fig. 3 the intersection

of the 12 half-spaces, given by al+PlMeCl(M) and al+flMlC2(V)

for M=0,l,2,3,4,5 are found to define a non-null convex polygon

while the intersection of that polygon with the half-space

defined by aI+h1 .6<'C2(6) is null. This allows us to choose

A2



parameters for LL(l). In particular since LL(l) fails to meet

F' the constraint for a point on the upper curve, we choose for

p the parameters of LL(l) the least slope feasible point in the

polygon which defines the feasible region for all points from

M=O through M=5, i.e. the line LL(l) will come as close as

possible to satisfying C2(6). MMIN is defined to be the index

B of the point on Cl which determines the minimum slope. In the

F case of LL(l) in Fig. 3,MMIN=3. Similarly MMAX is the index

of the point on C2 which determines the maximum allowable

p slope. SMAX is intended to denote that point on the boundary

of a polygon in the aup plane for which the slope is maximum

F while SMIN is similarly intended as the point of minimum slope.

The notation L(SMAX) or L(SMIN) refers to the line in the yM

plane which corresponds to the point SMAX in the aP plane.

[Thus in the case of the first line in Fig. 1 LL(l) is choosen

as L(SMIN) for the appropriate polygon. The variable ZZ is

F reevaluated for each approximating line and is the smallest

value of M which need be considered in the determination of

that line, i.e. ZZ=MIN(LFTClCFTC2). For example for the

"[ determination of LL(2) in Fig. 3, LFTCI=3, LFTC2=6, and ZZ=3.

Thus LL(2) must be above every point on Cl from M=3 on to the

( right as far as possible while LL(2) need be below points on

C2 from*M=6 on to the right. The variable T denotes the total

number of points for which Cl and C2 are defined. The condition

[ M=T terminates the algorithm.
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Appendix B

An Algorithm for Calculating the Intersection of a

Convex Polygon and a Linear Half-Space

The intersection of a linear half-space and a convex

polygon is either null or a convex polygon. The input data on

which the algorithm is based is a description of a convex

polygon plus a description of the half space, the output is

either a description of a convex polygon or an indication that

the intersection is null. Since the algorithm is to be used

recursively we require that the format of the output description

be the same as that of the input description. The Zormat Thr the

speciE!'titiln Che cnnve; is,. iLn *?raerrod Iist )L-' the

"corners" of the polygon (.:ti the first corner repetrted as

the last corner)plus an indication of the number of such

corners. The notation employed for the input polygon in the

flow diagram of Fig. 5 is n for the number of corners, and

A0 , A1 , ... I An for the coordinates of the corners with Arhn.

The notation for the resultant polygon is Bn, B1, ... , BmI

with L•=Bm. The half-space, S, is denoted by tCe equation

of the separating line L. The term (Ai S?) asks whether the

point Ai is an element of the half space defined by the

boundary L. The term LN(Ai, Ai-l) denotes the line segment

joining the point Ai to the point Ai-1 and the term

Bl



r (LWILN(Ai A-l)) denotes the point of intersection of the

Sseparation line L and the segment L 4(Ai, Ai-1). A geometric

illusti-ition of the input and output polygons is given in

Fig. 6. The algorithm itself is illustrated in the flow

diagram of Fig. 5. The algorithm is based on the fact that

the "corners" of the resultant polygon will be the corners

of the input polygon that are in the half-space plus the points

of intersection of the separating boundary and the boundaries

of the input polygon.

f
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Appendix C

A Theorem on Tchebysheff Approximation

Let f(x) be a continuous real valued function defined

everywhere on the non-negative axis. Let g(x) be an arbitrary

polynomial of degree n and let G be the set of all such nth

degree polynomials. Define R(fg) to be the largest value of

x such that for all O<y!x, jf(y)-g(y)I•6. If lf(O)-g(0)j>b,

then R(fg) is defined to be zero. Let xR be defined as

XR--max R(fg),

gEG

and denote by gR the polynomial which maximizes R, i.e.,

xR=R(f gR).

Define T(fg) to be the maximum value of x such that for all

0ýy!x, If(y)-g(y) 1•6 and further g(x)=f(x)+b. Let xT be

defined as

xT--max T(f~g),
gFG

and denote by gT the polynomial which maximizes T, i.e.,

xT=T(fgT)-

Define B(fg) to be the maximum value of x such that

for all 0_yýx, Jf(y)-g(y) [•6, and further g(x)=f(x)-b. Let

xB be defined as

xB=max B(f,g)
g eG

Cl
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and denote by gB the polynomial which maximizes B, i.e.,

F x=BS(fgB).

p Less formally, if we think of an upper boundary given

by f+6 and a lower boundary given by f-6, gR is the polynomial

B which stays within the error band, i.e., the interval between

f+6 and f-5, as far to the right as possible and xR the point

Sat which it leaves the error band. gT is the polynomial which

stays in the error band everywhere from zero to xT at which

point it contacts the "top" boundary. xT is as far to the

right as possible. is similarly defined except that at the

point xB the polynomial.gB contacts the "bottom" boundary. Ther theorem we wish to prove may now be stated as follows:

Theorem 1: xR=maximum (xT)xB), and further gR=gT=gB.

The first part of the theorem, i.e., xR--maximum

[ T)YB) may be established as follows. Assume that max

(XT•xB) = xT. It cannot be the case that xR<xT since

F R(f gT)>xR contrary to hypothesis. Similarly it cannot be that

r XR >XT since in this case either T(fgR)>xT or B(f~gR)>xB both

contrary to hypothesis. Since it cannot be the case that

X R>X T or that x R >XTV it must be that x R=X T. A similar
argument can be advanced for the case max (xT'xB)=xB by simply

reversing the roles of xT and xB in the above argument.

For the purpose of the following argument let us

"again assume that xR=max(xTIXB)=xT. Clearly gR=gT and in order

Sto complete the proof of the theorem we must show that gB=gR.
Toward this end we employ a theorem due to Tchebysheff which

C
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says in effect that the quantity If(y)-gR(y) j takes on its

maximum value at least n + 2 times over the interval L0XR],

say x 1 x 2 e ... <n+l<Xn+2=XR and that the sign of the error at

successive points alternates. Thus if n is even and g(XR)=

f(xR)+b we have that g(x )=ý(x.)+b for j=2i, 1<i• + 1 and
R 1 i :;

similarly g(x.)=f(x.)-6 for j=2i-l, l~i_- + 1. We will have

our desired result if we demonstrate that Xn+l=XB* Let us

assume that it is not the case that XB=Xn+l but that xn+1

XB (,xR=XT. Since Xn4 l is the rightmost point at which

gR=f-b it follows that gR(XB)>gB(XB). We note that gR is a

nth degree polynomial determined by the n+l points

(x llf(xl)-6), (x21f(x2)+b)1...9 (Xn~f(Xn)+b)1 (xn+llf (xn+1l)-b)-

Similarly gB is an nth degree polynomial determined by

(xl,f(xl)-bti'l), (x2'f(x2)+'ý-L2)7---9 (Xn jf(Xn)+ -n ),

(Xn+l f(x n+l )-+n+I) in which 6j20. Consider the nth degree

polynomial h(x) defined by the points (x 1 ,Al1),(x 2 ,-6 2 ),...,

(Xn,-A n)(xn+l'6n+l). It must be true that gB=gR+h since

they are all nth degree polyncmials and gB coincides with

gR+h at n+l points. We note that h(x) changes sign between

every pair of points so that all of the roots of h(x) are
accounted for and h(x) mtust be positive for all r>-n" We

have that h(xB)>O or that gB(XB)"gR(xB). Thus we have a

contradiction resulting from the assumption that XB>Xn+l.

Since B(f,gR)=Xn+1 it cannot be that XB(Xn+1 and therefore

XB=Xn+l and gB=gR. Similar arguments can be advanced for

the case of n odd and also for the case in which xR=xB.
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